请选择 进入手机版 | 继续访问电脑版
  • 搜索
  •  找回密码
     立即注册
  • 登录
  • 注册
  • 找回密码
  • 管理
行业信息文章详情

用大数据和人工智能理性评估特色小镇

2018-01-12阅读 134 特色小镇品牌研究 我要关注

目前,我国特色小镇建设在全国如火如荼,但各地受地域经济、文化等因素影响,特色小镇发展参差不齐。住建部分别于2016年10月和2017年7月公布了第一批和第二批中国特色小镇名单共403个小镇。这些特色小镇是在各地推荐的基础上,经专家评审得出。这种地方推荐、专家评审的人工决策方法要耗费大量的人力资源,难以对全国数目众多的小镇逐一评估。而且小镇的经济、交通、生态(例如年均PM2.5)等等指数经常变化,现有的决策模式很难对小镇做动态、经常性的评估。

现代心理学和认知学发现传统的、依赖于人的直觉和经验做决策是不可靠的。人工智能模型从数据出发,通过机器学习,能解决人工决策的偏差。利用人工智能模型来做特色小镇的评估需要大量的学习样本。杭州景理文化科技发展有限公司用大数据和人工智能技术开发了一套景观决策支持系统,我们使用该系统评选出高质量的特色小镇。

我们从全国选取了3,700个小镇,主要来源于住建部等7部委于2014年7月公布的《住房城乡建设部等部门关于公布全国重点镇名单的通知》。对于这些小镇,我们收集了69个指标,涵盖气候、地貌、经济、生态等等方面。这些指标的选取主要是考虑到它们和特色小镇的质量相关,同时这些数据也相对容易收集。

根据它们是否被列入住建部公布的第一、二批特色小镇名单,我们对这些小镇做了标记。被列入住建部名单上的是高质量特色小镇,由于它们是通过地方推荐、专家评审而来,它们的入选包涵着丰富的当地经验和专家知识 。

人工智能模型通过对这些小镇的学习,能够发现小镇气候、地貌、经济、生态等等指标和高质量特色小镇的相关性,从而计算出特色小镇质量指数。实际上,人工智能模型是在学习住建部的特色小镇名单里隐含的丰富信息,但这种学习并不是简单地复制专家的判断,而是以数据为基础,经过综合后把学到的具有统计显著性的内容固化到模型里。我们发现这个评估非常新颖、有现实意义,同时也符合经验和直觉的判断。

我们认为数据、人工智能模型和应用应该形成一个闭环。用数据训练人工智能模型,人工智能模型的输出支持应用,再根据从实际应用中得到的反馈来更新、增强数据。通过这种方式,我们的人工智能模型可以不断地迭代提升。相对于这种用数据来训练模型的方法,传统的、基于专家先验知识的评分体系是主观和静态的,其输出和现实的偏差不能有效地反馈回系统并做出调节,难以适应环境的动态变化。

事实上,利用大数据和人工智能做决策支持是全球各个行业的趋势。例如,在北美银行、保险业等等传统行业已经广泛地采用人工智能模型。特色小镇质量评估是我们的第一个尝试。而此前召开的中央经济工作会议明确指出要“引导特色小镇健康发展”,利用大数据和人工智能对特色小镇进行理性评估将有助于我国特色小镇的健康发展。

同样与特色小镇密切相关的文化旅游涉及众多的动态变化因素,对传统的专家决策方式提出挑战。“数据驱动决策”的人工智能模型将成为关键的工具。从智能手机、社交网络、物联网等等渠道采集的数据为人工智能模型提供“燃料”,通过数据训练的模型为文旅产品的设计和营销提供客观、及时的决策支持。继特色小镇之后,杭州景理的智能决策支持系统将会在文化旅游产业发挥重要作用。

(备注:图片及文字来源于网络)


上一篇:特色小镇成为发展新动能,PPP模式助力小镇开发

下一篇:规范“着装”让特色小镇行稳致远

分享到:

相关文章